Bulked segregant analysis using the GoldenGate assay to locate the Rpp3 locus that confers resistance to soybean rust in soybean
2009
A:PS
Formats
| Format | |
|---|---|
| BibTeX | |
| MARCXML | |
| TextMARC | |
| MARC | |
| DataCite | |
| DublinCore | |
| EndNote | |
| NLM | |
| RefWorks | |
| RIS |
Details
Title
Bulked segregant analysis using the GoldenGate assay to locate the Rpp3 locus that confers resistance to soybean rust in soybean
Publication Date
2009
Call Number
A:PS
Summary
Few resistance loci to soybean rust (SBR), caused by Phakopsora pachyr'hizi Syd., haVe been geoetically mapped and linked to molecular markers that can be used for marker assisted selectiol'). New technologies are available for single nucleotide polymorphism (SNP) genotyping that can be used to rapidly map traits controlled by single loci such as resistance to SBR. Our objective was to demonstrate that the high-throughput SNP genotyping method known as the GoldenGate assay can be used to perform bulked segregant analysis (BSA) to find candidate regIons to facilitate efficient mapping of a domirH3.nt resistant locus to SBR designated Rpp3. We used a 1536 SNP GoldenGate assay to perform BSA followed by sImple se.quen.ce repeat (SSR) mapping in anF2 population segregating for SBR resistance conditioned by Rpp3. A 13-cM region on linkage group C2 was the only candidate regiOn identifIed with BSA.Subsequent F2 mapping placed Rpp3 between SSR markers BARC_Satt460 and BARC_SaC263 on linkage group C2 which is the same region identified by BSA. These results suggest that the GoldenGate assay was successfUl atiniple. menting BSA, making it a powerful tool to quickly map qualitative traits since the GoldenGate assay is capable of screening 1536 SNPs on 192 DNA samples in three days.
Journal Citation
v.49(1):265-271, CROP SCIENCE
Contact Information
Record Appears in