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Abstract
This study investigates the spatial-temporal trends and variability of rainfall within East and South Africa (ESA)
region. The newly available Climate Hazards group Infrared Precipitation with Stations (CHIRPS-v2) gridded data
spanning 37 years (1981 to 2017) was validated against gauge observations (N = 4243) and utilised to map zones
experiencing significant monotonic rainfall trends. Standardised annual rainfall anomalies revealed the spatial-temporal
distribution of below and above normal rains that are associated with droughts and floods respectively. Results showed
that CHIRPS-v2 data had a satisfactory skill to estimate monthly rainfall with Kling-Gupta efficiency (KGE = 0.68 and
a high temporal agreement (r = 0.73) while also preserving total amount (β = 0.99) and variability (γ = 0.8). Two
contiguous zones with significant increase in annual rainfall (3–15 mm year−1) occurred in Southwest Zambia and
in Northern Lake Victoria Basin between Kenya and Uganda. The most significant decrease in annual rainfall (−
20 mm year−1) was recorded at Mount Kilimanjaro in Tanzania. Other significant decreases in annual rainfall ranging
between − 4 and − 10 mm year−1 were observed in Southwest Tanzania, Central-South Kenya, Central Uganda and
Western Rwanda. CHIRPS-v2 rainfall product provides reliable high spatial resolution information on amount of
rainfall that can complement sparse rain gauge network in rain-fed agricultural systems in ESA region. The observed
spatial-temporal trends and variability in rainfall are important basis for guiding targeting of appropriate adaptive
measures across multiple sectors.
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1 Introduction

There is an increasing body of evidence supporting that cli-
mate change and variability have significant impact on eco-
system health (Bartzke et al. 2018) and agricultural production
(Craparo et al. 2015; Niles et al. 2015; Lobell et al. 2011).
Future projections in the East and Southern Africa (ESA) re-
gion points to wetter climate (Otte et al. 2017; IPCC 2014)
although erratic rainfall patterns and frequent extreme events
such as droughts and floods are common (Nicholson 2016;
Guan et al. 2014). Over 70% of livelihoods in ESA region
depends on rain-fed agriculture, therefore highly vulnerable
to climate change and variability (Ochieng et al. 2017).
Therefore, understanding the spatial and temporal patterns of
climate change and variability is a key step towards designing
and targeting appropriate adaptation strategies.

Climatic extremes with adverse effects on crops and eco-
systems include droughts, flooding, hail storms, heat waves
and frost or their combinations. Increased frequency of climat-
ic extremes has significant effect on structure, functions, land
use patterns and livelihoods in agroecosystems (Adhikari et al.
2015). Rainfall is themost important limiting factor in rain-fed
farming systems in Africa (Niles et al. 2015) since it deter-
mines availability of soil moisture required for potential pro-
ductivity. The amount and distribution of rainfall determines
suitability of crop varieties and related agronomic manage-
ment at different locations (Muthoni et al. 2017). Low or
sub-optimal rainfall cause agricultural drought that retard
plant growth and reduced yields (Zampieri et al. 2017;
Zipper et al. 2016) while extremely high rainfall events cause
floods that destroy crops. However, impacts of climatic ex-
tremes vary in importance over space and time depending on
different farming systems, agro-ecologies and ability of
farmers to adapt (Niles et al. 2015). Climate change is
projected to reduce as much as 40% of maize yields in East
Africa by the end of twenty-first Century (Adhikari et al.
2015). Moreover, changes in rainfall regime accentuate pro-
liferation of new crop pests and diseases (Kumar et al. 2014).

Previous studies on rainfall trends in ESA region largely
used gauge station data, e.g. in Kenya (Odongo et al. 2015), in
Tanzania (Otte et al. 2017), in Zambia (Goenster et al. 2015;
Kampata et al. 2008) and Uganda (Onyutha 2016a; Kizza
et al. 2009). The above studies aimed at understanding rainfall
trends at catchments or basin scale although agricultural pol-
icies are increasingly focusing on mega-environments that
cuts across several countries. Moreover, gauge stations are
sparsely distributed in rural Africa, despite the high variability
in topography and other biophysical environments (Toté et al.
2015). The sparse distribution is confounded with temporally
incomplete records that introduce uncertainties when gauged
data is used for designing early warning and decision support
tools. Recent progress has demonstrated that synergistic
blending of data from gauge stations and remote sensing

satellites can reliably present the spatial-temporal distribution
of rainfall over extensive areas (Maidment et al. 2017;
Dembélé and Zwart 2016; Trejo et al. 2016; Funk et al.
2015; Toté et al. 2015; Asadullah et al. 2008; Dinku et al.
2007). The repetitive and near global coverage of remote sens-
ing platform compliments the gauge data by providing more
intuitive spatial-temporal patterns of rainfall to improve deci-
sion support applications such as drought monitoring and ear-
ly warning systems (Funk et al. 2015; Toté et al. 2015).

This study utilises Climate Hazards group Infrared
Precipitation with Stations version two (CHIRPS-v2) data to
analyse long-term trends and variability of rainfall (1981–
2017) in ESA region. The trend analyses identify zones
experiencing significant increasing or decreasing rainfall
trends. This information is helpful in quantifying the magni-
tude of risks posed by climate change and variability to guide
prioritisation of scarce resources by directing appropriate mea-
sures to most vulnerable zones. The study hypothesise that
understanding past trends in climate can inform future trajec-
tories to support decisions on spatial targeting of appropriate
adaptive measures. We posit that CHIRPS-v2 rainfall esti-
mates offer a reliable dataset for monitoring spatial-temporal
trends and variability of rainfall over regions with low density
of ground observation stations in Africa.

2 Material and methods

2.1 Study area

The study area is approximately 2.73 million km2 occur-
ring in seven countries within ESA region (Fig. 1). Rainfall
in Northern Tanzania, Burundi, Rwanda, Kenya and
Uganda shows a bimodal rainfall pattern. The long rainy
season occurs in March, April and May (MAM) and the
short rainy season in October, November and December
(OND). Rains in Malawi, Zambia and Central-Southern
Tanzania, are largely unimodal starting in October and
ending in April but exhibit high spatial-temporal variabil-
ity. Variability in rainfall is mainly determined by north–
south movement of the Intertropical Convergence Zone
(ITCZ) (Diem et al. 2014) and changes in sea surface tem-
peratures, especially in the tropical pacific (Maidment et al.
2015), El-Niño Southern Oscillation (ENSO); though relief
features like Mount Kilimanjaro and inland large water
bodies play a role in small-scale variations in rainfall.
Droughts are frequent with occurrence of at least once in
a 5-year cycle (Nicholson 2016).

2.2 Gauge and satellite rainfall data

The last few decades has witnessed considerable increase of
satellite-derived rainfall products with reasonable high spatial
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Fig. 1 The study area covering 7 countries in Eastern and Southern Africa (ESA) region and location of available rain gauge data used for evaluating
CHIRPS-v2 data
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and temporal resolution. Characteristics of some of freely
available hybrid gridded rainfall products are summarised in
Table 1. The input data for algorithms that estimate hybrid sat-
ellite rainfall products is obtained from (1) thermal infrared
(TIR) sensors only (e.g. Arkin and Meisner 1987); (2) passive
microwave (PMW) sensors only (e.g. Kummerow et al. 2001)
and (3) TIR and/or PMW sensors and/or gauge stations obser-
vations and/or model-based climatologies (e.g. Funk et al. 2015;
Huffman et al. 2007; Xie and Arkin 1997). Incorporating mul-
tiple sensors data in algorithms for estimating rainfall reduce the
inherent sampling errors of satellite estimates (Toté et al. 2015).
Rainfall products estimated using hybrid algorithms (e.g.
CHIRPSv2) perform better especially on areas with complex
meteorological patterns such as high elevations and coast lines
(Kimani et al. 2017; Toté et al. 2015).

This study used gridded Climate Hazards group Infrared
Precipitation with Stations version two (CHIRPS-v2) with
5.5 km spatial resolution (Funk et al. 2015). CHIRPS-v2 uses
Tropical Rainfall Measuring Mission Multi-satellite
Precipitation Analysis version 7 (TMPA-3B42-v7) to calibrate
global Cold Cloud Duration (CCD) rainfall estimates. It uses
interpolation of gauge station data and satellite-derived pre-
cipitation estimates to provide a global rainfall product with
fairly low latency, high resolution, low bias and long period of
record. We used monthly and annual time series data for the
last 37 years (1981–2017). Lakes and large waterbodies were
masked out from CHIRPS-v2 grids to analyse rainfall over
land mass only.

2.3 Statistical analysis

2.3.1 Validation of satellite and gauge data

Rainfall records were obtained from 65 gauge stations for
validating CHIRPS-v2 rainfall estimates. Gauge records
were obtained from different sources including Kenya me-
teorological department, individual farmers, agricultural
research stations and the global historical climatology net-
work (GHCN; Menne et al. 2012) database. The available
gauge stations records were compared with the list of
stations that were used in generating CHIRPS-v2 product
per month from 1981 to 2016 (Funk et al. 2015). To
ensure independent evaluation, only stations located more
than ten kilometres radius from those initially used for
generating CHIRPS-v2 were selected. Only 16 indepen-
dent stations that had good quality data were utilised for
evaluation (Online Resource 1(a)). Daily gauge records
were aggregated to monthly totals resulting to n = 4243
valid records after excluding data for months with any
missing daily observation. Following (Zambrano-
Bigiarini et al. 2017), the agreement between monthly
CHIRPS-v2 and gauge station data was evaluated using
modified Kling-Gupta efficiency (KGE) (Kling et al.

2012; Gupta et al. 2009) and decomposition of its three
individual elements, i.e. Pearson product-moment correla-
tion coefficient (r), bias (β), and variability (γ). This
goodness of fit statistics was derived using BHydroGOF^
R package (Zambrano-Bigiarini 2018). KGE was selected
based on general principle in hydrological applications
that require rainfall estimates to be able to reproduce tem-
poral dynamics (measured by r) while also preserving the
volume (measured by β) and distribution of rainfall (mea-
sured by γ) (Zambrano-Bigiarini et al. 2017). The best
value of KGE, r, β and γ is 1.0. KGE varies from minus
infinity to one with the values closer to 1 indicating that
the estimated values more accurately mimic the observed
values. The r measures the linear correlation between time
series of observed gauge data and satellite rainfall esti-
mates. The β measures the average tendency of the satel-
lite values to be larger (β > 1, overestimation) or smaller
(β < 1, underestimation) than gauge data. The γ shows
whether the dispersion of satellite estimates is higher or
lower compared to observations. The γ was derived using
modified KGE that ensure bias and variability are not
cross-correlated (Kling et al. 2012).

2.3.2 Precipitation trend analysis

The analysis was conducted in R for statistical computing (R
Core Team 2018) mainly using the following packages: raster
(Hijmans 2015), modifiedmk (Patakamuri 2018) and
BiodiversityR (Kindt and Coe 2005). Long-term means
(LTM) for annual and monthly CHIRPS-v2 rainfall were gen-
erated and plotted to visualise regional spatial-temporal pat-
terns. The difference between total rainfall for each year and
the LTM was divided by standard deviation to derive the an-
nual rainfall anomalies. The anomalies indicate the departure
from LTMwith negative values representing periods of below
normal rains (droughts) while positive values reveal above
normal rains (flood risk). Spatial temporal variation was de-
rived by calculating coefficient of variation (CV) for monthly
and annual time series using raster package. This allowed
detection of seasonality of monthly and annual rainfall time
series.

Hydro-meteorological time series data are characterised by
substantial departure from normality. For such data, the non-
parametric methods are preferred for detecting monotonic
trends because they have higher power than parametric
methods (e.g. t test). Non-parametric methods for detecting
direction of monotonic trends in time series data include the
Mann-Kendall (MK; Kendall 1975; Mann 1945), Spearman’s
Rho (SMR; Spearman 1904) and cumulative rank difference
(CRD; Onyutha 2016b) tests. MK test considers ranks of the
observations rather than their actual values and therefore it is
less affected by the actual distribution of the data and is less
sensitive to outliers (Yue et al. 2002a). CRD uses a concept
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similar to Hurst rescaling (Hurst 1951) to analogously rescale
the time series non-parametrically by calculating the differ-
ence between the exceedance and non-exceedance counts of
data points (Onyutha 2016b). Cumulative sum of differences
is used to separate sub-trends over unknown periods of in-
crease or decrease in a time series. SMR is another non-
parametric test that is used to detect whether correlation is
present between two ranks in a time series data. A siginificant
trend is detected if there is significant correlation between
consequent time steps and the ranks of the observed time
series data. The null hypothesis for the three tests statisticis
is that there is no monotonic trend in a given time series data.
In this study, MK was selected, although the three non-
parametric tests are largely identical in their performance as
demonstrated by Yue et al. (2002a) for MK and SMR, and
Onyutha (2016b) for MK and CRD. MK was preferred be-
cause it is more frequently used for analysing trends in hydro-
meterological time series datasets compared to the other two
methods (Yue et al. 2002a) and diverse forms of the algorithm
are incorporated in many R packages.

MK tests assume that the time series data are independent
and randomly ordered (Hamed and Rao 1998). Existence of
serial autocorrelation and ties in time series data influence
the magnitude of test statistic variance (Onyutha 2016c; Yue
et al. 2002b). Positive autocorrelation inflates sampling var-
iance of test statistic thus increasing probability of detecting
trends when in reality none exists (type 1 error). Before
conducting trend analysis, the significance of autocorrela-
tion coefficients for monthly and annual time series data
was tested at 5% significant level. Data was considered
auto-correlated if autocorrelation coefficient value exceeds
the upper and lower bounds of the confidence interval.
Diagnostic tests revealed marginal presence of serial depen-
dence for annual and monthly time series (Online resource 1
b-c). In this study, the effect of serial dependence was taken
into account by fitting a modified Mann-Kendall (MMK)
procedure proposed by Hamed and Rao (1998). This proce-
dure corrects the variance of test statistic if significant au-
tocorrelation is detected in the first three lags. Variance cor-
rection was achieved using ‘mmkh3lag’ function in
‘modifiedmk’ R package (Patakamuri 2018). The magni-
tude or slope of the trend was quantified using the Theil-
Sen method (Sen 1968; Theil 1950). The significant of
trends and Theil-Sen slopes was evaluated at nominal sig-
nificance level of p < 0.1.

3 Results

3.1 Validation of CHIRPS-v2 rainfall estimates

CHIRPS-v2 rainfall showed high skill to estimate gauge
observations in the ESA region (KGE = 0.68). CHIRPS-

v2 data also had high temporal agreement (r = 0.73) while
also preserving total amount (β = 0.99) and variability (γ =
0.8) compared to gauge observations. Scatterplot of two
datasets revealed that CHIRPS-v2 rainfall over-estimated
low-intensity rainfall below 100 mm and under-estimated
high-intensity rainfall above 100 mm compared to gauge
data (Fig. 2).

3.2 Long-term spatial-temporal variability in rainfall

LTM rainfall for 37 years in the ESA region ranged between
50 and 2400 mm (Fig. 3). The highest annual rainfall values
were recorded around mountain peaks such as, Mt.
Kilimanjaro, in Tanzania, Mt. Elgon in Uganda and Mt.
Kenya, and Aberdare Ranges in Kenya that recorded values
above 1700 mm. The driest regions receiving less than
265 mm annual rainfall occurred in Northern Kenya.

The annual rainfall anomalies (Fig. 4) revealed that ESA
region received above normal rainfall in 1982, 1989, 1997 and
2006, with the latter being the most severe. Significant large
areas of ESA region experienced differing magnitude of
drought during all the other years. Widespread droughts (be-
low normal rainfall) was experienced in 1983, 1984, 1987,
1992, 1993, 1995, 1996, 1999, 2000, 2001, 2003 and 2005
across the ESA region. Long-term monthly rainfall series re-
vealed that except in Uganda and western Kenya, June to
September are dry seasons with rainfall less than 34 mm
(Fig. 5).

Inter-annual variability was highest in North-Eastern
Kenya (CV = 55%; Fig. 6) coinciding with the lowest LTM

Fig. 2 Comparison of CHIRPS-v2 against observed gauge data. The
solid line indicates 1:1 relationship

1874 F. K. Muthoni et al.



rainfall (< 265 mm). A belt along Western Uganda, Rwanda,
Burundi, Tanzania and Northwest Zambia had less than 10%
CV in annual rainfall. In contrast, monthly rainfall was
characterised by high inter-annual variability up-to 180%with
January to March (JFM) rains in Kenya being the most

variable 60–180% Fig. 7). Monthly rainfall in Rwanda and
Burundi appeared relatively stable (CV < 50%) compared to
other countries, except for JJA (CV > 60%).

3.3 Long-term monotonic trends for rainfall

Results revealed variable spatial-temporal trends in annual
and monthly rainfall with significant decrease or increase ob-
served in different zones. Theil-Sen’s slope for annual rainfall
is presented in Fig. 8a, while Fig. 8b shows locations where it
was significant (p < 0.1). Generally, annual rainfall in Zambia
revealed an increasing trajectory compared to a decreasing
trajectory in the other 6 countries though in most instances
the trend was not significant (Fig. 8). Annual rainfall in
Zambia showed an increasing trend except for a small section
in Northern Province that revealed low magnitude (− 0.1 to −
4 mm year−1) significant decrease (Fig. 8b). The increasing
annual rainfall in Zambia (0–16 mm year−1) was significant in
almost the entire Western, Southern, Central, Lusaka, and
Copperbelt Provinces and extended to limited sections of all
the other Provinces. The highest significant increase occurred
in Western Province (8–16 mm year−1). The second largest
contiguous zone with a trend of significantly increasing annu-
al rainfall (0–16 mm year−1) occurred in Northern Lake
Victoria Basin in a transboundary region between Western
Kenya and Eastern Uganda (Fig. 8b). Moreover, an increase

Fig. 3 Long-term mean annual (1981–2016) CHIRPS-v2 rainfall (mm)
for 7 countries within Eastern and Southern Africa region

Fig. 4 Standardised anomalies
for annual rainfall in Eastern and
Southern Africa region indicating
the magnitude of departure from
long-term mean rainfall (1981–
2017). Negative values represent
below normal while positive
values represent above normal
rainfall that are associated with
droughts and floods respectively
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of less than 4 mm year−1 was recorded around Lake Turkana
in Kenya. In Tanzania, significant increase in annual rainfall
(1–8 mm year−1) was recorded in sections of Kagera,

Dodoma, Iringa and the area intersecting Simiyu, Mara and
Arusha regions.

The highest significant decrease in annual rainfall was −
19 mm year−1 at Mount Kilimanjaro in Tanzania (Fig. 8b). The
largest contiguous zone showing decreasing annual rainfall (−
0.1 to − 16 mm year−1) was observed in North, central South-
East Kenya covering Kitui, Makueni, Machakos, Kajiado,
Taita Taveta, Tana River, Kwale, Kilifi, Garissa, Wajir, Isiolo,
Embu, Tharaka-Nithi, Meru, Muranga and Kirinyaga counties.
Moreover, in Tanzania significant decrease in annual rainfall
ranging between − 1 and − 12 mm year−1 was observed in
Ruvuma region and around Ngorongoro Crater in Arusha re-
gion. A decrease ranging between − 1 and − 10 mm year−1 was
observed in a contiguous zone South of Lake Kivu covering
Southwest Rwanda and Northwest Burundi. Significant de-
crease in annual rainfall was observed in Central Uganda in a
contiguous zone intersecting Southern Buganda, Western and
Southern Provinces and around Gulu in Northern Province (<
− 8 mm year−1). Only a small area in Northern region of
Malawi showed significant decline in annual rains (<
8 mm year−1).

Similarly, the monthly rainfall showed varied spatio-
temporal trends. Figure 9 shows the monthly rainfall trends
and Fig. 10 shows locations where the slopes were signif-
icant (p < 0.1). South-west Zambia experienced a signifi-
cant increasing rainfall from November to January and
March but was most pronounced in December (Fig. 10).
Northern Lake Victoria Basin recorded increasing rainfall
trends during the short rainy season that usually occurs
between September and November with a more pro-
nounced increase in October. November rainfall increased

Fig. 5 Long-term mean (LTM) of
total monthly rainfall (mm) for
37 years (1981–2016) in 7
countries within Eastern and
Southern Africa

Fig. 6 Coefficient of variation (%) of annual rainfall (1981–2016) in
Eastern and Southern Africa region. The highest variability was
recorded in the North-Eastern Kenya
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significantly in Central, North and East and along the
coastal belt of Kenya.

The most pronounced decrease in monthly rainfall (− 0.9 to
3.6 mm year−1) was observed on December rains in Central
South-Eastern Kenya, South and South East Tanzania (Pwani,
Lindi, Mtwara, Morogoro and Ruvuma regions; Fig. 10. A
significant decline (− 0.1 to 3.6 mm year−1) in April rains in
Central, Southern and Northern Kenya occurred largely in the
same counties where annual rainfall declined (Fig. 10). The
decrease in annual rains in Central-west Uganda (Fig. 8) was
majorly due to declines of rainfall experienced during the
OND months (Fig. 10). There were also significant declines
(− 1.8 to − 2.7 mm year−1) in December rains observed in
parts of Mzuzu in Northern region of Malawi.

4 Discussions

4.1 Validation of CHIRPS-V2 with gauge rainfall

Validation results revealed that CHIRPS-v2 data has high skill
to estimate gauge observations in ESA region (KGE = 0.68).
It also showed high temporal agreement (r = 0.73) while also
preserving total amount (β = 0.99) and variability (γ = 0.8)
compared to gauge observations. Recent studies have reported
similar high agreement in East Africa region (Dinku et al.
2018), in Ethiopia (Ayehu et al. 2017), in Chile (Zambrano-
Bigiarini et al. 2017), in Venezuela (Trejo et al. 2016) and in
Colombia (Funk et al. 2015). Dinku et al. (2018) reported high
temporal correlation (r > 0.83) and low bias (− 4 to 13%) after

Fig. 7 Coefficient of variation
(%) of monthly rainfall (1981–
2017) in Eastern and Southern
Africa region

Fig. 8 Monotonic trends for
annual rainfall (mm year-1) in
Eastern and Southern Africa
(ESA) region for 1981–2017
period (a) and zones with
significant (p < 0.1) increase or
decrease in rainfall (b)
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evaluating performance of CHIRPS-v2 over six eastern Africa
countries using 1200 independent gauge stations. However,
CHIRPS-v2 over-estimate rainfall below 100 mm and under-
estimate rainfall above 100 mm, as reported in recent studies
(Trejo et al. 2016; Funk et al. 2015; Toté et al. 2015). The
validation exercise revealed that CHIRPS-v2 rainfall data es-
timated gauge observations with high skill. This demonstrates
the potential of application of the dataset for spatial-temporal
monitoring of rainfall trends and variability in rural Africa to
complement existing sparse gauge network. Such applications
are expected to improve agro-advisories and spatial targeting
of climate smart agricultural (CSA) technologies. Satellite
rainfall estimates cannot totally replace but rather complement
gauge observations since reliable records of the latter is used
to calibrate the former. Therefore establishment of more gauge
stations is still needed considering the prevailing low density
of gauge network despite complex topographical landscape.

4.2 Long-term spatial-temporal variability in rainfall

The highest variability in annual and monthly rainfall was
observed in the most arid area in North-eastern Kenya with
maximum CV reaching 55% (Fig. 6) and 180% (Fig. 7) re-
spectively. The high variability inmonthly rainfall compared to
annual rainfall implies that in most instances the total annual

rainfall remained relatively stable but the intra-year seasonality
is highly heterogeneous. The high inter-annual variability sig-
nifies increased instances of extreme events such as droughts
in the last four decades in the ESA region (Guan et al. 2014).
This has serious implications on agricultural production con-
sidering that success or failure of crops is more dependent on
temporal distribution rather than total amount of rainfall during
the growing season (Ngetich et al. 2014).

Annual rainfall anomalies revealed above normal rainfall
occurred across the region in 1997 and 2006 that is attributed
to El Nino effect (Siderius et al. 2018). Severe droughts were
recorded in West Kenya (1984), South East Tanzania (2003
and 2005) and Northern Uganda (2009). The periodic
droughts not only increase yield losses (Adhikari et al. 2015)
but also hinder adoption of CSA technologies (Niles et al.
2015).

4.3 Long-term monotonic trends in rainfall

Two contiguous zones with significant increase in annual rain-
fall (0.1 to 15 mm year−1) were identified in Southern Zambia
and in the northern part of the Lake Victoria Basin in Western
Kenya and Eastern Uganda (Fig. 8b). This is in agreement
with Maidment et al. (2015) who observed a similar increas-
ing rainfall trend in Southern Zambia (0.04 mm day−1 year−1)

Fig. 9 Trends in monthly rainfall
(mm year-1) for 1981–2017 in
Eastern and Southern Africa
(ESA) region
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and the Lake Victoria Basin (< 0.02 mm day−1 year−1) using
CHIRPS-v1 data from 1983 to 2008 that were resampled to
much coarser 2.5 degrees grids (~ 275 km at equator).
Maidment et al. (2015) further reported that the increasing
annual rainfall in Southern Africa was driven mainly by more
DJF rains that are attributed to sea surface temperature pat-
terns, particularly the Pacific Walker Circulation. Similarly,
our results show that the significant increase in annual rainfall
in Southern Zambia is largely driven bymore December rains.

Several studies also reported significant increase in rainfall
in Lake Victoria Basin across Kenya and Uganda. For
example, Kizza et al. (2009) analysed rainfall trends within
20 gauge stations in the Basin and found that positive trends
do predominate especially in the Northern part of the Basin.
Onyutha (2016a) observed increases of ~ 0.006 mm day year−1

(~ 2.19 mm year−1) in South-east Uganda within Lake Victoria
Basin. However, our results show that the significant increases
in annual rainfall within Lake Victoria Basin (Fig. 8b) was
largely driven by significant increases in the September and
October rain (Fig. 10). This concurs with Kizza et al. (2009)
that reported significant trends for short rains (OND) compared
to long rains (MAM) in the same Basin. The significant de-
crease in annual and OND rainfall in central West Uganda
agrees with a study by Diem et al. (2014) that reported signif-
icant decrease in June to December rains in the same region.

They observed that the decline extended further westward to-
wards the Congo Forest and is mainly driven by Atlantic multi-
decadal oscillation (AMO) during boreal summer and autumn.

The observed highest decline around Mt. Kilimanjaro
(20 mm year−1) is much higher than − 1.35 to 7.26 mm year−1

decline reported for the period 1973 to 2013 in the southern
slopes of the mountain (Otte et al. 2017). But that study covered
limited altitudinal range (750–1430 m a.s.l.) and attributed the
decline to El Nino Southern Oscillation (ENSO) and Indian
Ocean dipole (IOD). Our study observed a large significant
decline in April and May rains in Central to South and
Northern Kenya which is corroborated by Williams and Funk
(2011) who observed similar magnitude of decline in the same
area. The authors attributed this drying trend to the westward
extension of warm air (Walker Circulation) primarily driven by
increased warming of the sea surface temperature over the
Indian Ocean. The observed significant decline in long season
(MAM) rainfall in Kenya and Uganda contradicts the general
projections of increasing rainfall in East Africa (Otte et al. 2017;
IPCC 2014).

4.4 Significance and potential applications of results

Analysing both inter-annual and intra-annual trends in rainfall
offer intuitive information on dynamics of soil moisture in

Fig. 10 Significant (p < 0.1)
trends for monthly rainfall
(mm year−1) for the period
between 1981 and 2017 in
Eastern and Southern Africa
region. Significant slopes were
extracted from Fig. 9
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rain-fed systems because an area might have the same total
annual rainfall but have contrasting spatial-temporal differ-
ences in seasonality (Guan et al. 2014). Analysis of multi-
decadal climatic trends is required for developing robust cli-
mate adaptation strategies (Recha et al. 2016). Traditionally,
climatic trends are deciphered from stationary gauge stations
that have low density and significant data gaps in ESA region.
Therefore the per pixel analysis of rainfall trends in this study
compliments or compensates for sparse rain gauges to im-
prove agro-advisory services in ESA region. Moreover, the
approach undertaken in this paper to analyse rainfall trends
and variability in a transboundary ecosystem is expected to
promote harmonisation of climate change adaptation and re-
silience policies across the ESA region.

Information presented in this paper provide spatial evi-
dence to support agronomic and crop breeding programs to
setup empirical experiments aimed at developing cultivars and
management practices adapted to climatic trends in each pixel.
Crop breeders could target zones that exhibit significant in-
crease or decrease in rainfall to set up multi-locational trials
for developing cultivars adapted to specific climatic regimes.
Similarly, agronomists would be interested in setting up of
trials for testing genotype*environment*management out-
comes to develop recommendation domains for CSA prac-
tices. Maps on spatial-temporal variations and trends of
monthly and annual rainfall generated in this study would be
key inputs in spatially explicit models (e.g. Muthoni et al.
2017; Rubiano et al. 2016) that generate specific recommen-
dation domains for specific basket of technologies based on
crop trials in diverse rainfall regimes.

4.5 Limitations of the study

The skill of the satellite rainfall estimates over the study region
exhibit high spatial variability due to influence of climate,
topography and seasonal rainfall patterns (Dinku et al. 2018;
Kimani et al. 2017). Other uncertainties may arise from tem-
poral sampling, error in algorithms and satellite instruments
themselves (Ayehu et al. 2017). Similar to other hybrid rainfall
products, CHIRPS-v2 has inherent systematic biases emanat-
ing partly from low density and decreasing rate of reporting
from existing stations over time in Africa that lead to insuffi-
cient representation of rainfall variability (Dinku et al. 2018;
Kimani et al. 2018). These systematic biases decrease as the
time step of rainfall estimates are aggregated from daily to
annual timescale (Kimani et al. 2018; Dembélé and Zwart
2016). The accuracy of rainfall estimates is reduced by oro-
graphic processes at high elevations and frontal systems along
the coastlines and around inland water bodies (Dinku et al.
2018; Kimani et al. 2018). In East Africa, several hybrid sat-
ellite rainfall products under-estimate rains at elevation below
2500 m (m) above sea level (a.s.l.) and tend to over-estimate
above that elevation threshold due to orographic processes

(Kimani et al. 2017). CHIRPS-v2 data over-estimate long sea-
son rains (MAM) over mountainous regions in East Africa,
that is attributed to increased rainfall amounts emanating from
deep convective systems (Kimani et al. 2017). Some algo-
rithms for estimating gridded rainfall products uses coarse
resolution TIR data, for example, CHIRPS-v2 uses TRMM
data with 0.25o to produce dataset at 0.05o resolution
(Table 1), this can explain its tendency to over-predict low-
intensity rainfall since averaging over larger areas increases
frequency of rainfall events (Toté et al. 2015). Algorithms
based on TIR sensors have poor detections at fine spatial
and temporal resolutions although they perform better when
aggregated to coarser resolutions.

Different algorithms are designed to monitor certain as-
pects of rainfall variability, for example TAMSAT algorithms
are optimised for drought monitoring and therefore it accu-
rately capture more frequent low rainfall but under-estimate
high magnitude and total rainfall (Toté et al. 2015). However
recent evaluation studies (Dinku et al. 2018; Ayehu et al.
2017; Kimani et al. 2017; Toté et al. 2015) have demonstrated
that CHIRPS-v2 product has higher skills to estimate many
aspects of rainfall variability compared to TAMSAT-v2/3 and
ARC-v2 that were developed specifically for monitoring rain-
fall in Africa continent. Moreover, there are recent advances
towards developing more robust methods for correcting sys-
tematic biases in satellite rainfall estimates such as Bayesian
bias correction (Kimani et al. 2018).

5 Conclusions

This study analysed the spatial and temporal variability
and monotonic trends in rainfall in seven countries in the
ESA region. The validation of CHIRPS-v2 satellite rainfall
estimates revealed high skill for estimating gauge observa-
tions in ESA region (KGE = 0.68). It also showed high
temporal agreement (r = 0.72) while also preserving total
amount (β = 0.99) and variability (γ = 0.8) compared to
gauge observations. CHIRPS-v2 rainfall estimate provides
reliable spatially explicit information on amount and vari-
ability of rainfall to complement sparse rain gauge network
in ESA region. Both annual and monthly rainfall was high-
ly variable in North-eastern Kenya and most stable in
Western Uganda. Annual rainfall anomalies revealed
spatial-temporal distributions of droughts and above nor-
mal rains that are associated with floods. Two contiguous
zones with significant increase in annual were identified in
Southwestern Zambia and in the northern part of the Lake
Victoria Basin between Western Kenya and Eastern
Uganda. Information generated in this paper could be used
to inform targeting of appropriate adaptive measures across
multiple sectors and ecosystems.

1880 F. K. Muthoni et al.



Acknowledgements The authors thank the two anonymous reviewers for
their very constructive comments on earlier draft of the paper.

Funding information This study was funded by USAID through grant
numbers: AID-BFS-G-11-00002 and MTO 069018 under the Feed the
Future initiative to support Africa RISING program.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
?

References

Adhikari U, Nejadhashemi AP, Woznicki SA (2015) Climate change and
eastern Africa: a review of impact on major crops. Food Energy
Secur 4:110–132. https://doi.org/10.1002/fes3.61

Arkin PA, Meisner BN (1987) The relationship between large-scale con-
vective rainfall and cold cloud over the western hemisphere during
1982-84. Mon Weather Rev 115:51–74. https://doi.org/10.1175/
1520-0493(1987)115<0051:TRBLSC>2.0.CO;2

Asadullah A, McIntyre N, Kigobe M (2008) Evaluation of five satellite
products for estimation of rainfall over Uganda. Hydrol Sci J 53:
1137–1150. https://doi.org/10.1623/hysj.53.6.1137

Ashouri H, Hsu K-L, Sorooshian S et al. (2014) PERSIANN-CDR: daily
precipitation climate data record from multisatellite observations for
hydrological and climate studies. Bull Am Meteorol Soc 96:69–83.
https://doi.org/10.1175/BAMS-D-13-00068

Ayehu GT, Tadesse T, Gessesse B, Dinku T (2017) Validation of new
satellite rainfall products over the Upper Blue Nile Basin, Ethiopia.
Atmos Meas Tech Discuss 2017:1–24. https://doi.org/10.5194/amt-
2017-294

Bartzke GS, Ogutu JO,Mukhopadhyay S, Mtui D, Dublin HT, Piepho H-
P (2018) Rainfall trends and variation in theMaasai Mara ecosystem
and their implications for animal population and biodiversity dy-
namics. PLoS One 13:e0202814. https://doi.org/10.1371/journal.
pone.0202814

Craparo ACW, Van Asten PJA, Läderach P, Jassogne LTP, Grab SW
(2015) Coffea arabica yields decline in Tanzania due to climate
change: global implications. Agric For Meteorol 207:1–10. https://
doi.org/10.1016/j.agrformet.2015.03.005

Dembélé M, Zwart SJ (2016) Evaluation and comparison of satellite-
based rainfall products in Burkina Faso, West Africa. Int J Remote
Sens 37:3995–4014. https://doi.org/10.1080/01431161.2016.
1207258

Diem JE, Ryan SJ, Hartter J, Palace MW (2014) Satellite-based rainfall
data reveal a recent drying trend in central equatorial Africa. Clim
Chang 126:263–272. https://doi.org/10.1007/s10584-014-1217-x

Dinku T, Ceccato P, Grover-Kopec E, LemmaM, Connor SJ, Ropelewski
CF (2007) Validation of satellite rainfall products over East Africa’s
complex topography. Int J Remote Sens 28:1503–1526. https://doi.
org/10.1080/01431160600954688

Dinku T, Funk C, Peterson P, Maidment R, Tadesse T, Gadain H, Ceccato
P (2018) Validation of the CHIRPS satellite rainfall estimates over
Eastern of Africa. Q J RMeteorol Soc:1–21 https://doi.org/10.1002/
qj.3244

Funk C, Peterson P, Landsfeld M et al (2015) The climate hazards infra-
red precipitation with stations—a new environmental record for
monitoring extremes. 2:150066. https://doi.org/10.1038/sdata.
2015.66

Goenster S,WiehleM,Gebauer J,MohamedAli A, Stern RD, Buerkert A
(2015) Daily rainfall data to identify trends in rainfall amount and
rainfall-induced agricultural events in the Nuba Mountains of
Sudan. J Arid Environ 122:16–26. https://doi.org/10.1016/j.
jaridenv.2015.06.003

Guan K, Good SP, Caylor KK, Sato H, Wood EF, Li H (2014)
Continental-scale impacts of intra-seasonal rainfall variability on
simulated ecosystem responses in Africa. Biogeosciences 11:
6939–6954. https://doi.org/10.5194/bg-11-6939-2014

Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of
the mean squared error and NSE performance criteria: implications
for improving hydrological modelling. J Hydrol 377:80–91. https://
doi.org/10.1016/j.jhydrol.2009.08.003

Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for
autocorrelated data. J Hydrol 204:182–196. https://doi.org/10.
1016/S0022-1694(97)00125-X

Hijmans RJ (2015) Raster: geographic data analysis and modeling.
https://CRAN.R-project.org/package=raster. Accessed 10/10 2015

Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y,
Bowman KP, Stocker EF (2007) The TRMM multisatellite precip-
itation analysis (TMPA): quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales. J Hydrometeorol 8:38–55.
https://doi.org/10.1175/JHM560.1

Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc
Civ Eng 116:770–799

IPCC (2014) Africa. In: Change IPoC (ed) Climate change 2014—im-
pacts, adaptation and vulnerability: part B: regional aspects: working
group II contribution to the IPCC fifth assessment report: volume 2:
regional aspects, vol 2. Cambridge University Press, Cambridge, pp
1199–1266. https://doi.org/10.1017/CBO9781107415386.002

Kampata JM, Parida BP,Moalafhi DB (2008) Trend analysis of rainfall in
the headstreams of the Zambezi River Basin in Zambia. Phys Chem
Earth Parts A/B/C 33:621–625. https://doi.org/10.1016/j.pce.2008.
06.012

Kendall MG (1975) Rank correlation methods, 4th edn. Charles Grifn,
London

Kimani M, Hoedjes J, Su Z (2017) An assessment of satellite-derived
rainfall products relative to ground observations over East Africa.
Remote Sens 9:430. https://doi.org/10.3390/rs9050430

Kimani M, Hoedjes J, Su Z (2018) Bayesian bias correction of satellite
rainfall estimates for climate studies. Remote Sens 10. https://doi.
org/10.3390/rs10071074

Kindt R, Coe R (2005) Tree diversity analysis. Amanual and software for
common statistical methods for ecological and biodiversity studies.
vol ISBN 92-9059-179-X. World Agroforestry Centre (ICRAF),
Nairobi, Nairobi

Kizza M, Rodhe A, Xu C-Y, Ntale HK, Halldin S (2009) Temporal
rainfall variability in the Lake Victoria Basin in East Africa during
the twentieth century. Theor Appl Climatol 98:119–135. https://doi.
org/10.1007/s00704-008-0093-6

Kling H, Fuchs M, Paulin M (2012) Runoff conditions in the upper
Danube basin under an ensemble of climate change scenarios. J
Hydrol 424-425:264–277. https://doi.org/10.1016/j.jhydrol.2012.
01.011

Kumar S, Graham J, West AM, Evangelista PH (2014) Using district-
level occurrences in MaxEnt for predicting the invasion potential of
an exotic insect pest in India. Comput Electron Agric 103:55–62.
https://doi.org/10.1016/j.compag.2014.02.007

Kummerow C, Hong Y, Olson WS, Yang S, Adler RF, McCollum J,
Ferraro R, Petty G, Shin DB, Wilheit TT (2001) The evolution of
the Goddard Profiling Algorithm (GPROF) for rainfall estimation
from passive microwave sensors. J Appl Meteorol 40:1801–1820.

Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa 1881

https://doi.org/10.1002/fes3.61
https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2
https://doi.org/10.1623/hysj.53.6.1137
https://doi.org/10.1175/BAMS-D-13-00068
https://doi.org/10.5194/amt-2017-294
https://doi.org/10.5194/amt-2017-294
https://doi.org/10.1371/journal.pone.0202814
https://doi.org/10.1371/journal.pone.0202814
https://doi.org/10.1016/j.agrformet.2015.03.005
https://doi.org/10.1016/j.agrformet.2015.03.005
https://doi.org/10.1080/01431161.2016.1207258
https://doi.org/10.1080/01431161.2016.1207258
https://doi.org/10.1007/s10584-014-1217-x
https://doi.org/10.1080/01431160600954688
https://doi.org/10.1080/01431160600954688
https://doi.org/10.1002/qj.3244
https://doi.org/10.1002/qj.3244
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1016/j.jaridenv.2015.06.003
https://doi.org/10.1016/j.jaridenv.2015.06.003
https://doi.org/10.5194/bg-11-6939-2014
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/S0022-1694(97)00125-X
https://doi.org/10.1016/S0022-1694(97)00125-X
https://cran.r-project.org/package=raster
https://doi.org/10.1175/JHM560.1
https://doi.org/10.1017/CBO9781107415386.002
https://doi.org/10.1016/j.pce.2008.06.012
https://doi.org/10.1016/j.pce.2008.06.012
https://doi.org/10.3390/rs9050430
https://doi.org/10.3390/rs10071074
https://doi.org/10.3390/rs10071074
https://doi.org/10.1007/s00704-008-0093-6
https://doi.org/10.1007/s00704-008-0093-6
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1016/j.compag.2014.02.007


https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.
CO;2

Lobell DB, Bänziger M, Magorokosho C, Vivek B (2011) Nonlinear heat
effects on African maize as evidenced by historical yield trials. Nat
Clim Chang 1:42–45. https://doi.org/10.1038/nclimate1043

Maidment RI, Allan RP, Black E (2015) Recent observed and simulated
changes in precipitation over Africa. Geophys Res Lett 42:8155–
8164. https://doi.org/10.1002/2015GL065765

Maidment RI, Grimes D, Black E, Tarnavsky E, Young M, Greatrex H,
Allan RP, Stein T, Nkonde E, Senkunda S, Alcántara EMU (2017) A
new, long-term daily satellite-based rainfall dataset for operational
monitoring in Africa. Scientific Data 4:170063. https://doi.org/10.
1038/sdata.2017.63

Mann HB (1945) Nonparametric tests against trend. Econometrica 13:
245–259. https://doi.org/10.2307/1907187

Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An
overview of the global historical climatology network-daily data-
base. J Atmos Ocean Technol 29:897–910. https://doi.org/10.1175/
jtech-d-11-00103.1

Muthoni FK, Baijukya F, Bekunda M et al. (2017) Accounting for corre-
lation among environmental covariates improves delineation of ex-
trapolation suitability index for agronomic technology packages.
Geocarto Int:1–23. https://doi.org/10.1080/10106049.2017.
1404144

Ngetich KF, Mucheru-Muna M, Mugwe JN, Shisanya CA, Diels J,
Mugendi DN (2014) Length of growing season, rainfall temporal
distribution, onset and cessation dates in the Kenyan highlands.
Agric For Meteorol 188:24–32. https://doi.org/10.1016/j.
agrformet.2013.12.011

Nicholson SE (2016) An analysis of recent rainfall conditions in eastern
Africa. Int J Climatol 36:526–532. https://doi.org/10.1002/joc.4358

Niles MT, Lubell M, Brown M (2015) How limiting factors drive agri-
cultural adaptation to climate change. Agric Ecosyst Environ 200:
178–185. https://doi.org/10.1016/j.agee.2014.11.010

Novella NS, ThiawWM (2013) African rainfall climatology version 2 for
famine early warning systems. J Appl Meteorol Climatol 52:588–
606. https://doi.org/10.1175/jamc-d-11-0238.1

Ochieng J, Kirimi L, Mathenge M (2017) Effects of climate variability
and change on agricultural production: the case of small scale
farmers in Kenya. NJAS - Wageningen J Life Sci 77:71–78.
https://doi.org/10.1016/j.njas.2016.03.005

Odongo VO, van der Tol C, van Oel PR,Meins FM, Becht R, Onyando J,
Su Z (2015) Characterisation of hydroclimatological trends and var-
iability in the Lake Naivasha basin, Kenya. Hydrol Process 29:
3276–3293. https://doi.org/10.1002/hyp.10443

Onyutha C (2016a) Geospatial trends and decadal anomalies in extreme
rainfall over Uganda, East Africa. Adv Meteorol 2016:15–15.
https://doi.org/10.1155/2016/6935912

Onyutha C (2016b) Identification of sub-trends from hydro-
meteorological series. Stoch Environ Res Risk Assess 30:189–
205. https://doi.org/10.1007/s00477-015-1070-0

Onyutha C (2016c) Statistical uncertainty in hydrometeorological trend
analyses. Adv Meteorol 2016:26–26. https://doi.org/10.1155/2016/
8701617

Otte I, Detsch F, Mwangomo E, Hemp A, Appelhans T, Nauss T (2017)
Multidecadal trends and interannual variability of rainfall as ob-
served from five lowland stations at Mt. Kilimanjaro, Tanzania. J
Hydrometeorol 18:349–361. https://doi.org/10.1175/jhm-d-16-
0062.1

Patakamuri SK (2018) modifiedmk: modifiedMann Kendall Trend Tests.
CRAN. https://CRAN.R-project.org/package=modifiedmk.
Accessed 08/08 2018

R Core Team (2018) R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing. https://www.R-
project.org/. Accessed 10/29 2017

Recha JW, Mati BM, Nyasimi M, Kimeli PK, Kinyangi JM, Radeny M
(2016) Changing rainfall patterns and farmers’ adaptation through
soil water management practices in semi-arid eastern Kenya. Arid
Land Res Manag 30:229–238. https://doi.org/10.1080/15324982.
2015.1091398

Rubiano MJE, Cook S, Rajasekharan M, Douthwaite B (2016) A
Bayesianmethod to support global out-scaling of water-efficient rice
technologies from pilot project areas. Water Int 41:290–307. https://
doi.org/10.1080/02508060.2016.1138215

Sen P (1968) Estimates of the regression coefficient based on Kendall’s
tau. J Am Stat Assoc 63:1379–1389

Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-
resolution global dataset of meteorological forcings for land surface
modeling. J Clim 19:3088–3111. https://doi.org/10.1175/JCLI3790

Siderius C, Gannon KE, Ndiyoi M, Opere A, Batisani N, Olago D,
Pardoe J, Conway D (2018) Hydrological response and complex
impact pathways of the 2015/2016 El Niño in Eastern and
Southern Africa. Earth's Future 6:2–22. https://doi.org/10.1002/
2017EF000680

Spearman C (1904) The proof and measurement of association between
two things. Am J Psychol 15:72–101

Theil H (1950) A rank-invariant method of linear and polynomial regres-
sion analysis. Nederlandse Akademie van Wetenschappen Series A:
386–392. https://doi.org/10.1007/978-94-011-2546-8_20

Toté C, Patricio D, Boogaard H, van der Wijngaart R, Tarnavsky E, Funk
C (2015) Evaluation of satellite rainfall estimates for drought and
flood monitoring in Mozambique. Remote Sens 7:1758–1776.
https://doi.org/10.3390/rs70201758

Trejo FJP, Barbosa HA, Peñaloza-Murillo MA, Moreno MA, Farías A
(2016) Intercomparison of improved satellite rainfall estimation
with CHIRPS gridded product and rain gauge data over
Venezuela. Atmósfera 29:323–342. https://doi.org/10.20937/ATM.
2016.29.04.04

Williams AP, Funk C (2011) A westward extension of the warm pool
leads to a westward extension of the Walker circulation, drying
eastern Africa. Clim Dyn 37:2417–2435. https://doi.org/10.1007/
s00382-010-0984-y

Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis
based on gauge observations, satellite estimates, and numerical
model outputs. Bull Am Meteorol Soc 78:2539–2558. https://doi.
org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

Yue S, Pilon P, Cavadias G (2002a) Power of the Mann–Kendall and
Spearman’s rho tests for detecting monotonic trends in hydrological
series. J Hydrol 259:254–271. https://doi.org/10.1016/S0022-
1694(01)00594-7

Yue S, Pilon P, Phinney B, Cavadias G (2002b) The influence of auto-
correlation on the ability to detect trend in hydrological series.
Hydrol Process 16:1807–1829. https://doi.org/10.1002/hyp.1095

Zambrano-Bigiarini M (2018) hydroGOF: goodness-of-fit functions for
comparison of simulated and observed hydrological time series. R
package version 03–10. https://doi.org/10.5281/zenodo.840087

Zambrano-Bigiarini M, Nauditt A, Birkel C, Verbist K, Ribbe L (2017)
Temporal and spatial evaluation of satellite-based rainfall estimates
across the complex topographical and climatic gradients of Chile.
Hydrol Earth Syst Sci 21:1295–1320. https://doi.org/10.5194/hess-
21-1295-2017

Zampieri M, Ceglar A, Dentener F, Toreti A (2017) Wheat yield loss
attributable to heat waves, drought and water excess at the global,
national and subnational scales. Environ Res Lett 12:1–11. https://
doi.org/10.1088/1748-9326/aa723b

Zipper SC, Qiu J, Kucharik CJ (2016) Drought effects on US maize and
soybean production: spatiotemporal patterns and historical changes.
Environ Res Lett 11:094021

1882 F. K. Muthoni et al.

https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
https://doi.org/10.1038/nclimate1043
https://doi.org/10.1002/2015GL065765
https://doi.org/10.1038/sdata.2017.63
https://doi.org/10.1038/sdata.2017.63
https://doi.org/10.1175/BAMS-D-13-00068
https://doi.org/10.1175/jtech-d-11-00103.1
https://doi.org/10.1175/jtech-d-11-00103.1
https://doi.org/10.1080/10106049.2017.1404144
https://doi.org/10.1080/10106049.2017.1404144
https://doi.org/10.1016/j.agrformet.2013.12.011
https://doi.org/10.1016/j.agrformet.2013.12.011
https://doi.org/10.1002/joc.4358
https://doi.org/10.1016/j.agee.2014.11.010
https://doi.org/10.1175/jamc-d-11-0238.1
https://doi.org/10.1016/j.njas.2016.03.005
https://doi.org/10.1002/hyp.10443
https://doi.org/10.1155/2016/6935912
https://doi.org/10.1007/s00477-015-1070-0
https://doi.org/10.1155/2016/8701617
https://doi.org/10.1155/2016/8701617
https://doi.org/10.1175/jhm-d-16-0062.1
https://doi.org/10.1175/jhm-d-16-0062.1
https://cran.r-project.org/package=modifiedmk
https://www.r-project.org
https://www.r-project.org
https://doi.org/10.1080/15324982.2015.1091398
https://doi.org/10.1080/15324982.2015.1091398
https://doi.org/10.1080/02508060.2016.1138215
https://doi.org/10.1080/02508060.2016.1138215
https://doi.org/10.1175/JCLI3790
https://doi.org/10.1002/2017EF000680
https://doi.org/10.1002/2017EF000680
https://doi.org/10.1007/978-94-011-2546-8_20
https://doi.org/10.3390/rs70201758
https://doi.org/10.20937/ATM.2016.29.04.04
https://doi.org/10.20937/ATM.2016.29.04.04
https://doi.org/10.1007/s00382-010-0984-y
https://doi.org/10.1007/s00382-010-0984-y
https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
https://doi.org/10.1016/S0022-1694(01)00594-7
https://doi.org/10.1016/S0022-1694(01)00594-7
https://doi.org/10.1002/hyp.1095
https://doi.org/10.5281/zenodo.840087
https://doi.org/10.5194/hess-21-1295-2017
https://doi.org/10.5194/hess-21-1295-2017
https://doi.org/10.1088/1748-9326/aa723b
https://doi.org/10.1088/1748-9326/aa723b

	Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa
	Abstract
	Introduction
	Material and methods
	Study area
	Gauge and satellite rainfall data
	Statistical analysis
	Validation of satellite and gauge data
	Precipitation trend analysis


	Results
	Validation of CHIRPS-v2 rainfall estimates
	Long-term spatial-temporal variability in rainfall
	Long-term monotonic trends for rainfall

	Discussions
	Validation of CHIRPS-V2 with gauge rainfall
	Long-term spatial-temporal variability in rainfall
	Long-term monotonic trends in rainfall
	Significance and potential applications of results
	Limitations of the study

	Conclusions
	References


